在污水處理中,含氰電鍍廢水的處理非常重要,一旦處理技術(shù)選擇不當(dāng),可能會(huì)影響處理的整體效果,繼而引發(fā)嚴(yán)重的水體污染問題。利用電化學(xué)氧化法進(jìn)行含氰電鍍廢水的處理,能夠確保處理后的廢水達(dá)到排放標(biāo)準(zhǔn),不過在技術(shù)應(yīng)用過程中,應(yīng)該明確工藝條件對(duì)于處理效果的影響,做好相應(yīng)調(diào)整和優(yōu)化,確保處理效果能夠達(dá)到最佳化。
電化學(xué)氧化法對(duì)含氰電鍍廢水的處理,主要是在電解過程中,向廢水中加入相應(yīng)的氯化鈉作為輔助劑,在電解時(shí)產(chǎn)生氧化劑氯氣及次氯酸根,能夠?qū)η桦x子質(zhì)量濃度不超過 500mg/L 的電鍍廢水進(jìn)行處理。相比較而言,直接電化學(xué)氧化法則能夠?qū)η桦x子質(zhì)量濃度超過 1000mg/L 的電鍍廢水進(jìn)行處理。在陽極氧化作用下,氰離子能夠被轉(zhuǎn)化為氰酸根離子,依照不同的 pH 值,還可以進(jìn)一步氧化為不同的產(chǎn)物,如二氧化碳與氮?dú)?、銨根離子與草酸鹽、銨根離子與碳酸鹽等。
電化學(xué)氧化法的基本原理,是在電解槽內(nèi)設(shè)置有機(jī)物溶液或者懸浮液,接通直流電后,可以在陽極上奪取電子,將有機(jī)物氧化或者向?qū)⒌蛢r(jià)金屬氧化成高價(jià)金屬離子,然后再將有機(jī)物氧化。依照電解方式的不同,借以將電化學(xué)氧化法分為直接電解氧化和間接電解法,其在富營(yíng)養(yǎng)化水體處理中有著較為廣泛的應(yīng)用,相比較傳統(tǒng)工藝,電化學(xué)氧化法不需要直接投加化學(xué)物質(zhì),也不需要使用微生物,不僅操作簡(jiǎn)單,控制容易,而且反應(yīng)速度更快,優(yōu)點(diǎn)相當(dāng)明顯。
選擇了間歇電化學(xué)氧化法,將電流密度控制在 50mA/c㎡,需要處理的廢水體積為 200mL,將廢水溫度控制在 25℃左右。將 Ti/PbO2-F、Ti/RuO2-TiO2-SnO2 電極作為陽極,陽極規(guī)格為 3cm×3cm。將 Fe、Ti、石墨電極作為陰極,規(guī)格與陽極相同。將電極間距調(diào)整到 0.5cm,然后進(jìn)行鼓氣攪拌工作。在實(shí)驗(yàn)中,可以通過對(duì)陽極和陰極材料、pH 值、氯離子質(zhì)量濃度等,對(duì)電鍍廢水中氰離子及 COD 的去除效果進(jìn)行分析和研究。
將 Ti/RuO2-TiO2-SnO2 電極作為陽極,進(jìn)行 3h 的電解處理,測(cè)定處理后的廢水,氰離子質(zhì)量濃度為 14.76mg/L,COD 質(zhì)量濃度為 159mg/L; 將 Ti/PbO2-F 電極作為陽極,同樣電解 3h,氰離子質(zhì)量濃度為 39.73mg/L,COD 質(zhì)量濃度為 172mg/L。對(duì)比兩種結(jié)果,Ti/RuO2-TiO2-SnO2 電極較Ti/PbO2-F 電極的處理效果更好,分析原因,主要是 Ti/PbO2-F 電極本身屬于非活性電極,活性電位較高,Ti/RuO2-TiO2-SnO2 電極則屬于活性電極,在析氯、析氧過程中有著較為廣泛的應(yīng)用。不僅如此,Ti/RuO2-TiO2-SnO2 電極在降解的過程中,槽電壓更低,因此選擇其作為陽極。
不同 pH 值對(duì)廢水處理效果有著不同的影響,當(dāng) pH 值為 8 時(shí),電解 3h,氰離子質(zhì)量濃度為 22.86mg/L;當(dāng) pH 值為 10 時(shí),電解 3h,氰離子質(zhì)量濃度為 14.76mg/L; 當(dāng) pH 值 為 12 時(shí), 電解3h,氰離子質(zhì)量濃度為27.40mg/L。對(duì)比三種不同的結(jié)果,可以看出,當(dāng)pH值 為10時(shí),能夠獲得最佳降解效果,無論是氰離子還是COD,都能夠達(dá)到最高去除率,能耗也較低。對(duì)比四種陰極材料,發(fā)現(xiàn)除 Pb 外,其他三種材料的槽壓并沒有很大區(qū)別,F(xiàn)e 陰極的槽壓最低,表明其降解效果最好,石墨陰極的效果最差。
在相關(guān)研究中,Meier K 利用 IrO2-Pt/Ti 電極作為陽極,將 Fe、Cu、Ti 等作為陰極,分析其對(duì)于硝酸鹽還原效果的影響,結(jié)果表明,按照去除率從低到高的順序,以此為 Ti、Cu 和 Fe,金屬電極的導(dǎo)電能力能夠直接決定被處理對(duì)象在電極上得到電子的能力,陰極材料的活躍性越強(qiáng),電解過程中達(dá)到陰極的電子越容易釋放,能夠生成原子態(tài)的氫,還原性較強(qiáng),因此,這里選擇 Fe 作為陰極材料。
因此,在利用電化學(xué)氧化法對(duì)含氰廢水進(jìn)行處理時(shí),應(yīng)該盡量選擇堿性環(huán)境,如果pH值偏低,則會(huì)影響氯對(duì)于氰離子的氧化作用,加上陽極表面存在的OH-放電,陽極去pH值會(huì)伴隨著降解過程的深入逐漸下降。當(dāng)pH值降低到酸性(7以下)時(shí),廢水處理過程中將會(huì)釋放劇毒氫氰酸氣體,對(duì)周邊環(huán)境造成污染。不過,過高的p H值會(huì)對(duì)電極產(chǎn)生腐蝕,同樣會(huì)影響降解的效果,在這種情況下,可以將pH值控制為10。
利用 Fe 或者 Ti 作為陰極,進(jìn)行 3h 電解處理,測(cè)定處理后的廢水,氰離子質(zhì)量濃度為 27.48mg/L 和 16.95mg/L,COD 質(zhì)量濃度為 170mg/L和 176mg/L;利用 Pb 或者石墨作為陰極,電解 3h 后,氰離子質(zhì)量濃度為 28.6mg/L 和 29.1mg/L,COD 質(zhì)量濃度為 181mg/L 和 197mg/L。
在沒有加入氯化鈉的情況下,電解 3h,氰離子質(zhì)量濃度為 4.41mg/L,COD 質(zhì)量濃度為 250mg/L;加入 0.5g/L 的氯化鈉,電解 3h,氰離子質(zhì)量濃度為 1.90mg/L,COD 質(zhì)量濃度為 214mg/L;加入 1.0g/L 氯化鈉,電解3h,氰離子質(zhì)量濃度為 0.15mg/L,COD 質(zhì)量濃度為 154mg/L??梢悦黠@看出,在加入氯離子后,氰離子和 COD 的去除效率都有所增加,分析原因,主要是因?yàn)殡娀瘜W(xué)反應(yīng)本身較為復(fù)雜,在氯離子加入后,不僅會(huì)在電極表面進(jìn)行直接的電化學(xué)氧化,還會(huì)在 Cl-/Cl2 或者 Cl-/ClO-之間進(jìn)行間接電化學(xué)氧化。
當(dāng)溶液中 Cl-的質(zhì)量濃度足夠高時(shí),會(huì)在電化學(xué)氧化的過程中產(chǎn)生 Cl2 以及 ClO-,這些產(chǎn)物都能夠幫助降低廢水中 COD的質(zhì)量濃度。基于此,在 Cl-質(zhì)量濃度較高的情況下,COD 也會(huì)有著較高的去除率。相關(guān)研究文獻(xiàn)指出,若溶液中 Cl-質(zhì)量濃度達(dá)到 CN- 的 3-5倍,氰離子和 COD 都可以獲得較高的去除率,而在氯離子加入后,電解液的電導(dǎo)率會(huì)有所增加,槽壓的降低有助于降低能源消耗。